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ABSTRACT

An off-line method to recover the whole unknown
parameter set of the Duffing’s oscillator by means of a
genetic algorithm is presented in this paper. The fact that
the system is observable and constructible with respect to
a suitable output (measurable variable) allows obtaining
an integral parametrization o the output. Based on this
integral parametrization of the output, that depends on the
unknown parameters, a random eslimation of the output
can be generated by finding many solutions. The unknown
parameters are conlained in a bounded sel. This random
eslimation is obtained provided that the error between lo
the aciual output and the estimated output minimizes a
quadralic function of the emors. The minimization problem
and the random estimations of the output are formulated
directly in terms of a genetic algorithm. A population of
chromosomes is codified with the parameters of the
Duffing's oscillator system. A fitness function is established
to evaluate the chromosomes, in such a manner thal it
minimizes a quadratic function of the emors. The
population of chromosomes evolves unti! a fitness average
threshold is obtained. This method is numerically feasible
and easy lo implement in a digital compuler.
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INTRODUCTION

The reconstruction and identification of chaolic
attractors from one or more suitable states is one of
the most challenging problems in chaos theory and
its applications. Thus, several methods for
reconstructing and identifying chaotic systems have
been proposed in the literature (for a deeper
treatment of those methods, the reader is referred to
{3), (6] and [7]). In these works, the authors have
applied control theory to design state observers and
system identification schemes for recovering the
missing variables and the unknown parameters. The
other important approach is based on the well-
known Takens' Theorem (see [0}, [12]. [13]. [14],
[15)). This methodology consists in analyzing the
observed time series from a nonlinear system for

reconslructing a time delay of a phase space, in
which it is possible to analyze the attractor. This is
carried out by using time delayed values of an
observed scalar quantity as coondinates for the
phase space. Roughly speaking, vector state

y(n) constructed as:
y(n) ={x(n),x(n +T),....x(n +(d -1)T)]

can be estimated from a set of observations. Here X

is the observed variable, T s the time delay and d'is
the embedding dimension (see ([22]). The last
approach is based on soft computing, as proposed
in [9], [10], [11]. [3]. In those works, the unknown
chaotic syslem is viewed as a black box belonging to
a class of nonlinearities. Therefore, the dynamic
neural network can be used to recover the unknown
parameters.

In this paper, we propose a simple and efficient
approach for revealing all the unknown parameters
and estimating the velocity state for the Duffing's
system by means of a genetic algorithm (GA). The
purpose of a GA in any application is to evolve a
chromosome population that codifies several
possible solulions of the problem using genstic
operators like selection, crossover and mulation.
The goal of GA is optimization of a filness or cost
function that depends on the problem to solve. In our
case, the main ldea consists on minimizing the norm
of a quadratic function, which depends on the
unknown parametars and successive integrations of
a suitable output (the position of the Duffing's
system). The integral parametrization of the output
of the Duffing's oscillator is necessary for shaping
the positive function that will be minimized. The
minimum of the funclion Is reached when the actual
parameter values are attained. The proposed
methodology differs from the one described in [15]
and [18] because we avoid the necessity of
computing the derivatives of the measurable variable
states (by using many pairs of timepoints and
averaging the eslimates), instead of, we apply
successive integrations of the output. It is worth to
mention that our method aiso differs from others
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since it can estimate the parameter W (which is the
force frequency).

The rest of the paper is organized as follows.
Section 1 contains a brief introduction to Duffing's
system. Including an integral parametrization of the
output and the parameters identification. Seclion 2
presents the numerical implementation of the used
GA and describes the results obtained, while
Seclion 3 is devoted to conclusions and suggeslions

for further research.

Flexible Beam

« Magnets — IR

Fig.1 Duffing's oscillator

I. Duffing’s Mechanical Oscillator

Figure 1 depicls a diagram of Duffing's system. This
oscillator is formed of a flexible steel beam tied to
the top center of a box. On either side of the bottom
of the box are two electromagnelts. When an
alternating current excites the electromagnets,
magnetic field makes the bar to move. The non-
linear model, which can be found in (1] and [17), is

given by:
x=v
v=-pv=p,x’ + p,x+ Acos(wr)

The horizontal displacement from the vertical at the
lower extremity of the beam is measured by x. The
magnitude of the forcing function is denoled with A,
the forcing frequency is 7, the damping coefficient is
p1, and the fixed constants, which are related to the
non-inear stifiness function of the beam, are p; and

(1)

.
It is known that the system has a chaotic behavior
[22] for the fixed values of parameters in a
neighborhood

d{p,=04,p,=-1.1,p, =1,A=2.1,0=18}.
A An integral parametrization of the output

In this seclion, we introduce a simple integral
paramelrization for  Duffing's system. This
parametrization allows us for building a function that
depends on the unknown parameters and on

successive integrations of the
(output). meaSUrah[e
Let us consider equation () and et yg 4

y = x (i.e. the position is known). T ake a4

state v = y can be obtained by meane "."® Vely,
parametrization as follows: NS of g 0"

V=V, -Pl(Y".VO)_PJ_[)’! +pzjy

+ A( in(

— Sm _- .

w or) Stn( axo))

where yp and vp stand for the initial conditio
ns

states x(to)) and v(to) respectively. Symboy

. t
denotes the quantity (-[.x(rl)drl)llem

integrals, such as (ﬂx) are also useq Withoy
integration variables and integration limig

Note that the integral parametrizalion
equation (2), allows us to measure the \elogiiven
v, as a function of the outpul, y modulo m;vsta
conditions.

Integrating equation (2) once again with reg
time from initial time ¢t to the final time t we have
following iterated integral equation: '

Y= yo +3lt=10)+ plyolt-10)= [
+paffy-pf[’

- Al T eoslon) = os(wr) + s

From (3) we conclude that the system is observat
and constructible with respect to the output
[24]). The last equation contains the
information for recovering the set of parameters.
the reconstruction process an error is generated
that must be minimized as a quadratic function

paramelers {v,J s P1s P2y Py ,A,w}. in the foliowi
section we present such quadratic function.

B. Parameters identification for the Duffing
System

It is known that parameter recovering of a
based on the measurements of one of
variables leads to an optimization problem
characterized by its ill-posed nature in the Hadams
sense (see [23] for more details), since a
solution cannot be obtained. Usually, the issue
be solved using some variant of Newton's meth
conjugated gradient algorithm or even
quadratic method (see [25]). In this section we
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the problem as follows. First, a parametric estimator
for the output y of (3) is proposed. Next, a
quadratic error functions between y and j is

created. Finally, a simple GA is applied to find an
oplimal solution.

Wwe begin by establishing the identification problem
for the Duffing’s system:

Let q=[qm%qz,q;,q‘.q,] be the weclor of
unknown parameters where ¢, € R for / = 0,1,....5,

and let j}() be the following estimation output
function:

7. 9)= yo +ao8 )+ g,y (1) +¢,(1)]
+‘h¢3(’)+‘h¢4(’)' ‘hf(‘h r‘Is-’)

where the set of variables {9, (¢).0,(:),¢, ()¢, ()}

is an iterated integral function of the measurable
output, y which is defined by:

@)

¢|(’)= =1y, ¢2(f)= —Iy;
60=[[y o.0)=-[[» (5)

and finally f (A,a),t) denotes the time dependent
function given by

f(‘h s> ') = g‘;‘(cos(‘h')"' 1)

B~

+ 3 gin (Qs oX’ )
qs

Now, consider the following estimation error defined

= y(’)"'j’(la q) {6}

Note that if veclor q takes the real values of Duffing's
system given by g, = [vo,p,,Pz.P;,A,m] then
e(t) = 0 for any time t. This means that the problem

of finding the vector of unknown parameter q € R®

is clearly equivalent to solving the following
unconstrained minimization problem:

Ze (kT) @)

qtR‘

where T Is the sampling time and n is the total
number of samples.

To find the minimum of the last expression, it is
necessary o introduce the following basic
assumptions:

A.1 The strings of outputs y(t-kt) for a fixed delay { >

0 and k={0,1,...,n) are available for any time t, such
that t > kt.

A.2 The auxiliary functions @,(f—k7) for a fixed
delay { > 0 and k={0,1,...,n} defined in §) can be
stored and computed.

A.3 The set of parameters of the noninear system
(1) belongs to a neighborhood of

{p,=04,p,=-1.1,p, =1, 4=2.1,0=1.8}.
Therefore, variable y belongs to a chaotic attractor.

The problem of finding g such that expression (7) is
minimized, can be solved by a numerical
implementation of the well-known Newton's method
or some variations of it. However, instead of
Newton's method, we employ a GA which avoids the
possibility of falling into a local minimum. The GA
creates a population of g in a stochastic fashion
according lo some basic rules (see {19], [20], [21)).
Then, it selects the element that produces the
smallest efror in (7).

Remark 1 The objective of all optimization
problems is to find a minimum or maximum objective
function value. Considering minimum values, usually
a problem may have more than one minimum
objective function value. There are many traditional
deterministic  algorithms  available to  solve
optimization problems for a local minimum. Some of
these methods include the descent gradient
techniques. These methods require the evaluation of
gradient informalion in order to solve the problem.
Gradient evaluations can become difficuit and time
consuming when complex objective functions are
present. These methods always look for the closest
minimum, without regarding it is a local or global
one,

. NUMERICAL IMPLEMETATION OF
THE GA

Computer simulatiors have been carried out in order
to estimate the unknown parameters

{Pl,P,.p,.A,m} and initial state v, for the
Duffing's system given in (1). The numerical program
was implemented by using the fourth-order Runge-
Kutta algorithm. The computation was performed
with 8 decimal digit numbers. To obtain a good
performance, the step size in the numerical method
was set 10 0.001. The parameter values were taken

asp, =035, p,=-10145, p, =0.9567

A=2.15 and « =1.8931 . The sampling time was
selected as T=0.25 sec. and the number of samples
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was chosen as n=20. The initial conditions where

specified below. This i thge
taken as 1{0)=0.3and j{0)=-2.3 respectively. f

creating generation Pj,,, al g,
5. The "cost” of each individuga) was P

Now, we describe in a general fashion how the GA e

- al
is employed to minimize the function given in (7). )

via Y e’(kT)where T = g 5 "

1. Individuals in the GA are veclors (in Rs) of
the form

ql = lQOJ’ql,l’qzlvqlf!Q(nqul

It can be seen that the GA is a real-coded one

(as opposed to a binary coded one).

2. The initial population, P, contains 500
individuals, while subsequent populations,
P,, consist of 100 individuals. This allows to
perform a wider search with the initial
population while concentrating on more
specific regions afterwards.

3. The best individual, q; (evidently ranked
1st), in generation P, is passed on to
generalion Pjs1, with no change.

4. Several steps are involved in the creation of
generation Pps, they are as follows: a)
selection; b) crossover; c) mutation.

a ) To accomplish selection, each
individual in P; is assigned a probability
which is calculated linearly according to it's
ranking in the whole population . Selection of
individuals is made by generating random
numbers in [0,1] (say &) and comparing
them to the accumulated probability, Ap(qy),
of each individual. Individual g is selected to

be part of P,',. when a; = Ap(g). This is the
welkknown roulette selection scheme.

b) The crossover algorithm used in this
GA Is a slight modification of the flat
crossover (or arithmetic crossover) operator
(see [4] .[21]{5)). An "offspring”
h= [ho,hl,hz,h,,h‘ ,h,] is generated as

h, =f-q,+ (l—ﬁ)°‘7:,z
from "parents”
q, =IQO.I’ql.I'qu’qJ.l’Q4.l’qSJJ

g, =[‘h.z-‘h.zqu.zs%.zs%_z:‘h.z]

where g is a better individual that q2
(L.e. gy makes the error function smaller than
g, does).and 8 is a random number chosen
uniformly from the interval [0.5,1). This
interval is used in order to weight as more
“influential" the information carried by the
best of the parents. This process is repeated
until there are 99 "offspring” {J; passes on
unchanged).

¢) The mutation algorithm consists in
randomly changing a component of 50% of
the individuals created at the last step.
Changes are done within the vicinities

k= nd n 5
The algorithm stops when |
reaches a "cost” of 10-9_};’_ It:;esst Ndivig, .
6. Components of s “

qg= [qo’qvapq]"h ,q,] werg sear Vequ
vicinities of radius 25 for g, . i
radius 5 for g C‘éH{é?Z 2ne

7 =[!_r%3&,0.4,—1 1,1,2.11 _3]

In the following figures we present the
results after applying the previously descri
In figure 2, four signals are dispja
measurable output and three reconstmcleg e?:
These signals correspond to the best lndivi‘zgna‘a
generations 1, 200, and 22793 (last genere.
Note that the last one cannot be distinguishea""“)
the original output. This means that the Bl’rorq
estimated parameter is almost zero. .

obt

ain
beq "

Measurable output A
1 PProximated oyt

2
; ] generation#y / |
m \ o\ !
0 \ y( . i
A — - }
0o 1 2 A 5 0 1 3 3
seconds 21 sscon?is 3
5 Approximated output Approximated outpy
i generation # 200 . 4 last generation /
\
¥y 0\\ g 0‘\ /
R - -1 T
0 1 2 3 4 ° 0o 1 2 3 41}
seconds seconds

Figure 2. Measurable output andthree reconstrucled
signals.

Figures 35 show the evolution process of the

initial state v and of parameters P, Py Pyt
respectively through generations.



An Identification Genetic Algorithm for the Duffing's Oscillator 145

2. o4————
4 l 02"
-1 ! P o
4 l -
N 0.4
:22'4 i 0.8
05 1 15 2 .- 05 1 15

A . 2
Generation x10' Generation x 10*

Figure 3. Evolution process of initial state vo. and
parameter b
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Figure 4. Evolution process parameters p; and ps.

idea is to minimize the difference between the
available output and the estimated oulput, as
described in (7). The minimization process is carried
out applying the GA This approach was validated
by means of numerical experiments, in which the
quadratic error was efficiently minimized, and,

therefore, the parameters and the unknown state
were estimated in a salisfactory way.
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Figure 6. Error minimization process.
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Finally, In Figure 6 we show the behavior of
expression (7); the process of error minimization. It
can be seen that the error tends to zero when the
generalion number increases, therefore, the
reconstructed output is nearly the original output.
Evidently, this implies that the actual and estimated
paramelers are very close, as shown in Table 1.

lil. Conclusions

A method for recovering parameters and estimating
the velocity state of the Duffing's oscillalor was
proposed. We exploit the fact that the system is
observable and constructible with respect to a
measurable outpul, which is the flexible beam
position. This property permits us to build an iterated
integral equation of the available output, which
contains the needed information for recovering the
absent state and the unknown parameters. Based
on the iterated integral equation, we estimate the
output (defined in (4)) assuming that physical
parameters of the system are unknown. The main

Table 1. Best individual of some generations.
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